Лабораторная работа 5. Оптимизация для машинного обучения
Используйте notebook: Linear_Programming.ipynb
Пример 1. 
Допустим, у нас есть n товаров с заданными стоимостями vi и массой wi. В сумку убирается с кг. Сколько какого товара взять, чтобы сумма всех стоимостей товаров была наибольшей?
values = [4, 2, 1, 7, 3, 6]
weights = [5, 9, 8, 2, 6, 5]
C = 15
n = 6
Решение:
Сформулируем задачу линейного программирования:
[image: рис]
Как должна выглядеть задача в векторно-матричной форме:
[image: рис]
[image: рис]
Вектор А размера 6 превращаем в матрицу размера (1, 6) с помощью функции expand_dims. Создаём все переменные:
c = - np.array(values)
A = np.array(weights)         #shape = (6,)
A = np.expand_dims(A, 0)      #shape = (1,6)
b = np.array([C])
И закидываем переменные в оптимизатор scipy. Получаем искомое значение функции = 52, 5 и x = (0, 0, 0, 7.5, 0, 0). Т.е. мы взяли только самую дорогую четвёртую вещь.
Предположим, что товары в задаче нельзя дробить и решим задачу целочисленного линейного программирования.
Scipy этого делать не умеет. Будем использовать новую библиотеку cvxpy. Для этого в х создаём переменную, которую будем оптимизировать, размер её будет n = 6, а числа должны быть целыми:
x = cvxpy.Variable(shape=n, integer = True)
Создаём ограничения, используя матричное умножение @:
constraint = (A @ x <= b)
total_value = c * x
Создаём задачу:
problem = cvxpy.Problem(cvxpy.Minimize(total_value), constraints=[constraint])
Получим, что нам можно взять 138 412 039 товаров с собой. А х получились отрицательными. Цифры получились очень нереалистичными.
х ≥ 0
Будем рассматривать только положительные x, добавив новое ограничение. Получим реалистичные цифры: берём четвёртый товар в количестве = 7.
х = 0 или 1
А что, если мы можем брать не любое количество товаров, а только один или не брать вовсе? Задача превратиться в задачу о рюкзаке. Теперь задаём х типа boolean.
Получим стоимость = 17, взяв 1-й, 4-й и 6-й товар.
[image: рис]  Обратим внимание, что используя scipy, мы могли не указывать явно, что x только положительные, т.к. в линейном программировании считаются только неотрицательные x.
А вот cvxpy универсален. Мы, не указывая, что это линейное программирование, просто задали функцию. А он понял, что это задача оптимизации и использовал нужные алгоритмы. Поэтому здесь ограничение на положительные х мы указывали явно.
Задание 1.
Составьте оптимальный план перевозок, со Склада № 1 и Склада № 2, в три торговых центра, с учётом тарифов, запасов и потребностей, которые указаны в таблице:
[image: ]
Сформулируйте задачу, как задачу линейного программирования, и решите её любым способом (желательно программным).
Пример 2 о назначениях
У вас есть n задач и n человек, которые могут их сделать. Каждая задача должна быть сделана одним человеком и каждый должен сделать ровно одну задачу. У человека i задача j будет стоить сij. Вам нужно сделать все задачи как можно дешевле.
Решение:
	Сформулируем задачу как задачу ЦЛП.
Пусть xij = 1, если задачу j выполнит человек i, а если работы выполнил кто-то другой, то  xij = 0.
Минимизируем суммарную стоимость сij · хij.
Первое условие: x либо 0, либо 1.
Второе условие: каждый человек должен взять ровно одну задачу.
Третье условие: каждую задачу должен взять ровно один человек.
[image: рис]
[image: рис]
	Пример:



Задание 2
Решите задачу о назначениях
[image: ]
Найдите минимальную стоимость.
Пример 3 коммивояжёра
Вам нужно объехать n пунктов, время в пути между пунктами i и j равно dij. Нужно объехать все пункты, чтобы минимизировать суммарное время в пути. В каждый пункт нужно заехать ровно один раз.
Решение:
Сформулируем задачу как задачу ЦЛП. Пусть мы имеем множество отрезков между парами пунктов, и отрезок xij = 1, если в наш путь вошёл отрезок между пунктами i и j, и 0 если не вошёл. Целевая функция — суммарное время проезда.
Первое условие: x либо 0, либо 1.
Второе условие: в каждый пункт нужно въехать ровно один раз.
Третье условие: из каждого пункта нужно выехать ровно один раз.
[image: рис]
	[image: рис]
	


Задание 3
Необходимо найти кратчайший маршрут из точки , который проходит через все другие точки и возвращается в .
[image: ]
Сформулируйте эту задачу как задачу ЦЛП и решите её.
Найдите длину кратчайшего пути.
 Практика. Градиентный спуск
Используйте notebook: Gradient_Descent.ipynb
В этой практической части модуля мы реализуем метод градиентного спуска на Python без использования библиотек. Посмотрим, как он ведёт себя при разных параметрах и критериях остановки.
Оптимизировать будем функцию Розенброка:
[image: рис]
Задаём функцию градиента, посчитав производные:
[image: рис]
Зададим параметры. Начальная точка (0, 0), γ = 0.1, условием остановки зададим 5 000 итераций.
Имплементируем формулу градиентного спуска:
[image: рис]
 x_new = (x_cur[0] - gamma * grad(*x_cur)[0],
            x_cur[1] - gamma * grad(*x_cur)[1])
Запустив градиентный спуск, заметим, что уже на 6-й итерации числа становятся очень большими. С помощью библиотеки matplotlib.pyplot попробуем порисовать графики значений функции и текущей точки. На втором рисунке мы явно видим, что темп обучения γ был задан очень большим, и точка просто выпрыгнула из рассматриваемой нами зоны. Красным на рисунке 2 изображён искомый минимум — точка (1, 1).
[image: рис][image: рис]
Посмотрим, как работает код, рисующий вторую картинку. Он рисует линии уровня, на которых функция принимает одинаковые значения.
Попробуем задать значение γ = 0.000001. По графику заметим, что от начальной точки мы никуда и не ушли. Всё дело в малом количестве итераций. Условием остановки зададим теперь 50 000 000 итераций. И будем печатать каждую 100 000-ую итерацию. Видим, что функция сошлась уже к 5 000 000 итераций. 
[image: рис]                    [image: рис]
Хорошо видно, что функция f(x, y) положительная. Поэтому условие остановки мы можем записать так:
if f(*x_cur) < 0.01
Зададим γ = 0.001 и будем печатать все итерации. Теперь для того, чтобы функция сошлась, нам понадобится 3 000 итераций. На графике видно, что мы далеко от оптимальной точки. Но такие условия остановки алгоритма используют на практике.
[image: рис][image: рис]
Попробуем сделать то же самое, но начнём из точки (0, 2). Обратим внимание, как резко теперь стало падать значение функции. Точка же изначально двигается перпендикулярно линиям уровня.
[image: рис]                    [image: рис]
Заметим, что последние 2 000 итераций точка практически не изменялась. Мы можем отслеживать расстояние между точками как условие остановки. Квадрат расстояния между точками x1, x2 рассчитаем с помощью функции:
def dist(x1, x2):
    return (x1[0] - x2[0]) ** 2 + (x1[1] - x2[1]) ** 2
Зададим условие остановки как:
if dist(x_new, x_cur) < 1e-9:
[image: рис]
Для реализации градиентного спуска можно использовать библиотеку scipy с модулем optimize.
Задание 4
Найдите градиентным спуском минимум функции  
[image: ]
Задание 5
Найдите градиентным спуском минимум функции 
[image: ]
Задание 6
Напишите следующую точку градиентного спуска с momentum для функции
[image: ]
Задание 7
На рисунке изображён график функции f(x). Какая точка будет следующей после x0 в методе Ньютона для поиска решения уравнения f(x) = 0?
[image: ]

Задание 8
Найдите следующий шаг метода Ньютона для функции 
[image: ], если текущая точка x = 0, y = 1 .
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